有趣的数学小故事
发布时间:2024-08-17 21:23 作者:admin 点击: 【 字体:大 中 小 】
有趣的数学小故事
故事一般都和原始人类的生产生活有密切关系,他们迫切地希望认识自然,于是便以自身为依据,想象天地万物都像人一样,有着生命和意志。下面是小编帮大家整理的有趣的数学小故事,供大家参考借鉴,希望可以帮助到有需要的朋友。
有趣的数学小故事 篇1气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差 一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两(脱机使用打印机是什么意思:当电脑上显示出“脱机使用打印机”时,就表示电脑和打印机的连接已经断开,需要重新连接才能使用。)次,无论我们如何刻意去投掷,两次的物是相同的。
Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据 输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。 这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结 果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小,结果出来了,不过令他目瞪口呆。
结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不 出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。
有趣的数学小故事 篇2蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组 成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半—— 即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默 契”?
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然 是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当 时地球一天仅21.9小时,一年不是365天,而是400天。
有趣的数学小故事 篇3一个最普通的火柴游戏就是两人一起玩,先置若干支火柴于桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根 火柴者获胜。
规则一:若限制每次所取的`火柴数目最少一根,最多三根,则如何玩才可致胜? 规则一:若限制每次所取的火柴数目最少一根,最多 三根,则如何玩才可致胜? 例如:桌面上有n=15根火柴,甲﹑乙 为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能 留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的 火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上 之分析可知,甲只要使得桌面上的火柴数为4﹑8﹑12﹑16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3 根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。
规则二:限制每次所取的火柴数目为1至4根,则又如何致胜? 原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。 通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为 k+1 之倍数。
规则三:限制每次所取的火柴数目不是连续的数,而是一些 分析:1﹑3﹑7均为奇数,由于目标为0,而0为偶数,所以先取甲,须 使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1﹑3﹑7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对于火 柴数的奇或偶,也是无法依照己意来控柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上 的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把
奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。
通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。 通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。
规则四:限制每次所 分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的 火 柴数为5之倍数加2时,甲也倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。
通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。 6、韩信点兵 甲先取,则甲每次取时所留火柴 韩信点 兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人 一列余6人……。刘邦茫然而不知其数。 中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问 剩三,七七数之,剩二,问物几何?」 答曰:「二十三」书「孙子算经」也有类似的问题 术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩 二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则 置十五,即得。」 孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人 发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数 学中占有一席非常重要的地位。
有趣的数学小故事 篇4我们身体真的很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。家长可能不理解,但是很多小孩子很快就能学会。计算9的倍数时,将手放在膝盖上,像下表中所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×9。只要像上图所示那样,弯曲标有数字7的手指。然后数弯曲的那根手指左边剩下的手指数是6,它右边剩下的手指根数是3,将它们放在一起,得出7×9的答案是63。
【有趣的数学小故事】相关文章:
1.有趣的心理小故事
2.有趣的英语小故事
3.有趣的儿童小故事
4.有趣的哲理小故事
5.有趣的英语小故事
6.数学小故事
7.名人读书小故事_有趣的名人读书小故事
8.有趣的神转折小故事
猜你喜欢
幼儿园大班下学期家长会发言稿8篇
雷锋的小故事50字(通用11篇)
有关慈善作文300字5篇
幼儿园卫生保健制度(精选23篇)
背影仿写作文550字(通用86篇)
《暖春》观后感(15篇)
学校食堂的管理制度15篇
暖优秀作文600字合集八篇
半年 总结-半年工作总结(通用6篇)
月度工作总结(精选23篇)